Spatial mixture modeling of fMRI data
نویسندگان
چکیده
منابع مشابه
Spatial mixture modeling of fMRI data.
Recently, Everitt and Bullmore [1999] proposed a mixture model for a test statistic for activation in fMRI data. The distribution of the statistic was divided into two components; one for nonactivated voxels and one for activated voxels. In this framework one can calculate a posterior probability for a voxel being activated, which provides a more natural basis for thresholding the statistic ima...
متن کاملSpatial Modeling of Censored Survival Data
An important issue in survival data analysis is the identification of risk factors. Some of these factors are identifiable and explainable by presence of some covariates in the Cox proportional hazard model, while the others are unidentifiable or even immeasurable. Spatial correlation of censored survival data is one of these sources that are rarely considered in the literatures. In this paper,...
متن کاملA Bayesian hierarchical framework for spatial modeling of fMRI data
Applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric, neurological, and substance abuse disorders and their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. Complementary approaches consider the ensemble of voxels constituting a...
متن کاملData Decomposition and Spatial Mixture Modeling for Part Based Model
This paper presents a system of data decomposition and spatial mixture modeling for part based models. Recently, many enhanced part based models (with e.g., multiple features, more components or parts) have been proposed. Nevertheless, those enhanced models bring high computation cost together with the risk of over-fitting. To tackle this problem, we propose a data decomposition method for part...
متن کاملSpatial–temporal modelling of fMRI data through spatially regularized mixture of hidden process models
Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of spatio-temporal prototypes (mixture components). Each prototype com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Human Brain Mapping
سال: 2000
ISSN: 1065-9471,1097-0193
DOI: 10.1002/1097-0193(200012)11:4<233::aid-hbm10>3.0.co;2-f